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By realizing the insufficient degree of Galilean invariance of the traditional multiple-relaxation-time colli-
sion operators, Geier et al. �Phys. Rev. E 73, 066705 �2006�� proposed to relax differently the moments shifted
by the macroscopic velocity, leading to the so-called cascaded lattice Boltzmann method �LBM�. This paper
points out that �a� the cascaded LBM essentially consists in adopting a generalized local equilibrium in the
frame at rest; �b� this new equilibrium does not affect the consistency of LBM; and finally �c� if the raw
moments are relaxed in the frame at rest as usual and the number of relaxation frequencies is reduced, the
proposed derivation leads to the two-relaxation-time collisional operator with proper polynomial equilibrium.
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I. INTRODUCTION

The lattice Boltzmann method �LBM� is considered a vi-
able alternative for solving the hydrodynamic Navier-Stokes
equations �1–3�. The Lax equivalence theorem illustrates that
�a� consistency and �b� stability are two essential conditions
for ensuring the convergence of the numerical solution to the
well-posed initial value problem �4�. �a� The consistency of
the LBM with regard to the Navier-Stokes equations can be
established, for example, by the Chapman–Enskog expan-
sion �5,6� or by the Hilbert expansion with proper scaling
�7,8�. Unfortunately, a mathematical tool for analyzing in
general �b� the stability of a system of nonlinear partial dif-
ferential equations does not exist at present. A popular ap-
proach consists of linearizing the system of equations around
an arbitrary configuration, applying a Fourier transform in
order to get rid of the spatial gradients in the case of periodic
boundaries, and finally discussing the obtained ordinary dif-
ferential equations by von Neumann analysis �4,9,10�. How-
ever, in general, many heuristic issues are proposed for guid-
ing the design of stable LBM schemes, including how to
discretize the velocity space �11–15� and how to truncate the
polynomial expansion of the local equilibrium �14�.

The collision step of the algorithm has been proven to
play an essential role. In particular, the multiple-relaxation-
time �MRT� collisional operator, which was first heuristically
proposed in order to enhance collisions �16� and then sys-
tematically developed �9,17�, and its variants, such as the
two-relaxation-time �TRT� operator �18�, allow one to en-
hance the stability by properly tuning the numerical bulk
viscosity, which is a free parameter in a scheme aiming to
recover the incompressible limit of Navier-Stokes equations.

Recently, a new result was added to the previous picture.
By realizing the insufficient degree of Galilean invariance of
the traditional MRT collision operators, Geier et al. �19� pro-
posed to relax differently the central moments, i.e., the mo-
ments shifted by the macroscopic velocity, in a moving frame
�instead of the traditional practice of relaxing the raw mo-
ments in the frame at rest�, leading to the so-called cascaded
LBM.

This paper aims to provide a simple mathematical inter-
pretation, pointing out that �a� the cascaded LBM consists
essentially in adopting a generalized local equilibrium in the
frame at rest, which is a function of both conserved and
nonconserved hydrodynamic moments. Moreover �b� the

asymptotic analysis proves that the method consistently re-
covers the correct system of macroscopic equations. Finally
�c�, despite the different formalism, if the raw moments are
relaxed in the frame at rest as usual and the number of re-
laxation frequencies is reduced, the proposed derivation
leads to the TRT collisional operator with proper polynomial
equilibrium.

This paper is organized as follows. In Sec. II, some pre-
liminaries are introduced. In Sec. III, two derivations are
reported, based on relaxing the raw moments in the frame at
rest as usual �result c� and on relaxing the central moments in
the moving frame, leading to the cascaded LBM and the
generalized local equilibrium �result a�. In Sec. IV, it is
proven that the generalized local equilibrium does not affect
the consistency of the LBM �result b�. Finally, some conclu-
sions are reported.

II. PRELIMINARIES

A. Continuous velocity space

Let us introduce the local equilibrium distribution func-
tion �eq in the continuous two-dimensional velocity space
��x ,�y��R2, namely,

�eq = 3�̄ � �2�� exp�− 3��i − ūi�2 � 2� , �1�

where �̄= �����, �̄ūi= ���i��� �i=x ,y�, � is the generic distri-
bution function, and

��·�� = �
−�

+�

d�xd�y . �2�

It is possible to prove that the continuous local equilibrium
given by Eq. �1� minimizes an entropy function H��� under
the constraints of mass and momentum conservation �14�.

Let us introduce the generic continuous raw equilibrium
moment

�xx¯xyy¯y
eq � xx ¯ x

n times

, yy ¯ y
m times

�= ���x
n�y

m�eq

��

, �3�
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and the corresponding continuous central equilibrium mo-
ment

�̂xx¯ ¯y
eq �xx ¯ x

n times

,yy ¯ y
m times

� = ����x − ūx�n��y − ūy�m�eq�� .x yy
�4�

In particular, taking into account Eq. �1�, it is immediate to
realize that the first even central moments are �̂eq= �̄ , �̂xx

eq

= �̂yy
eq = �̄ /3, �̂xy

eq=0 , �̂xxyy
eq = �̄ /9, while the first odd central

moments are �̂x
eq= �̂y

eq= �̂xxy
eq = �̂yyx

eq =0.

B. Discrete velocity space

Concerning the discrete velocity space, let us consider
the D2Q9 lattice, where the discrete velocity
component vi has the following values:

vx = �0,− 1,− 1,− 1,0,1,1,1,0�T,

vy = �0,1,0,− 1,− 1,− 1,0,1,1�T.

Before proceeding, let us define the rule of computation for
the lists. Let h and g be the lists defined by h
= �h0 ,h1 ,h2 , . . . ,h8�T and g= �g0 ,g1 ,g2 , . . . ,g8�T. Then hg is
the list defined by �h0g0 ,h1g1 ,h2g2 , . . . ,h8g8�T. The sum of
all the elements of the list h is denoted by �h�=�i=0

8 hi.
The equivalent moment space is defined by a transforma-

tion matrix, which is not unique. For example, let us
consider the nonorthogonal transformation matrix,
M = �1; vx ; vy ; vx

2 ; vy
2 ; vxvy ; �vx�2vy ; vx�vy�2 ; �vx�2�vy�2�T,

which involves proper combinations of the lattice velocity
components. The transformation described by the matrix M
diagonalizes the collisional operator of the TRT model �see
�18�, even though this simple property is not clearly stated
there�. On the other hand, let us define the following or-
thogonal transformation matrix �considered in �19��:

K = 	
1 0 0 − 4 0 0 0 0 4
1 − 1 1 2 0 1 − 1 1 1
1 − 1 0 − 1 1 0 0 − 2 − 2
1 − 1 − 1 2 0 − 1 1 1 1
1 0 − 1 − 1 − 1 0 − 2 0 − 2
1 1 − 1 2 0 1 1 − 1 1
1 1 0 − 1 1 0 0 2 − 2
1 1 1 2 0 − 1 − 1 − 1 1
1 0 1 − 1 − 1 0 2 0 − 2


 , �5�

where clearly KTK is diagonal.
The dimensionless density �̄ and flow velocity ūi are de-

fined by �̄= �f� and �̄ūi= �vi f�, where f is the discrete distri-
bution function. Let us introduce the generic discrete raw
moment

�xx¯ ¯y�xx ¯ x
n times

, yy ¯ y
m times

� = �vx
nvy

mf �

x yy , �6�

and the corresponding generic discrete central moment

�̂xx¯ ¯y�xx ¯ x
n times

,yy ¯ y
m times

�= ��vx − ūx�n�vy − ūy�mf� .y yx �7�

III. CASCADED LBM

The generic LBM algorithm consists of a collision pro-
cess and a streaming process. Following �19�, we define the
collision process as

fp = f + Kg�f , feq,	e,	o� , �8�

where feq is the discrete local equilibrium, 	e and 	o are the
relaxation frequencies for the even and odd moments, re-
spectively, and fp is the postcollision distribution function.
All the previous quantities are computed in �t̄ , x̄i ,vi�, where t̄
and x̄i are the time and space in lattice units, respectively. We
define the streaming step as f�t̄+1, x̄i+vi ,vi�= fp�t̄ , x̄i ,vi�.

Because of the collisional invariants, g0=g1=g2=0. Con-
cerning the remaining terms g
 �
=3–8�, following �19�, let
us consider first the particular case 	e=	o=1, which implies
that the postcollision distribution function is in equilibrium,
namely,

feq
p = f + Kg*, �9�

where g*=g�f , feq ,1 ,1�. Let us multiply Eq. �9� by �vx
− ūx�n�vy − ūy�m, let us take the sum �·� of the resulting list
and, finally, let us assume that the equilibrium moments of
the postcollision discrete function coincide with the continu-
ous counterparts, namely,

��vx − ūx�n�vy − ūy�mKg


*� = �̂xx¯xyy¯y

eq − �̂xx¯xyy¯y ,

�10�

where 
=3–8. In particular, considering the first moments
�discussed in Sec. II� and realizing that the left-hand side of
Eq. �10� is linear with regard to g



* �
=3−8� yields

S	
g3

*

g4
*

g5
*

g6
*

g7
*

g8
*


 = 	
�̂xx

eq − �̂xx

�̂yy
eq − �̂yy

�̂xy
eq − �̂xy

�̂xxy
eq − �̂xxy

�̂xyy
eq − �̂xyy

�̂xxyy
eq − �̂xxyy


 , �11�

where S is the shift matrix for passing from the frame at rest
to the moving frame, namely,

S = 	
6 2 0 0 0 0

6 − 2 0 0 0 0

0 0 − 4 0 0 0

− 6ūy − 2ūy 8ūx − 4 0 0

− 6ūx 2ūx 8ūy 0 − 4 0

8 + 6�ūx
2 + ūy

2� 2�ūy
2 − ūx

2� − 16ūxūy 8ūy 8ūx 4


 ,

�12�

while the vector on the right-hand side of Eq. �11� is
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�̂xx

�̂yy

�̂xy

�̂xxy

�̂xyy

�̂xxyy


 = 	
�xx − �̄ūx

2

�yy − �̄ūy
2

�xy − �̄ūxūy

�xxy − �xxūy − 2ūx�xy + 2�̄ūx
2ūy

�xyy − 2�xyūy − ūx�yy + 2�̄ūxūy
2

�xxyy − 2�xxyūy − 2ūx�xyy + �xxūy
2 + ūx

2�yy + 4ūxūy�xy − 3�̄ūx
2ūy

2


 . �13�

Solving the system of equations given by Eq. �11� yields

	
g3

*

g4
*

g5
*

g6
*

g7
*

g8
*


 = 	
− ��xx + �yy�/12 + �̄/18 + �̄ūx

2/12 + �̄ūy
2/12

− ��xx − �yy�/4 + �̄ūx
2/4 − �̄ūy

2/4
�xy/4 − �̄ūxūy/4
�xxy/4 − �̄ūy/12 − �̄ūx

2ūy/4
�xyy/4 − �̄ūx/12 − �̄ūxūy

2/4
��xx + �yy�/6 − �xxyy/4 − �̄/12 − �̄ūx

2/12 − �̄ūy
2/12 + �̄ūx

2ūy
2/4


 . �14�

A. Recovering the traditional TRT scheme

Before proceeding with the derivation reported in �19�, let
us consider first the particular choice g3=	eg3

*, g4=	eg4
*,

g5=	eg5
*, g6=	og

6
*, g7=	og

7
*, and g8=	eg8

*. In this case, Eq.
�8� can be rewritten in a simpler way,

fp = f + Kg = f + M−1�MKg� = f + A�feq − f� , �15�

where A=M−1�M,

� = diag��0,0,0,	e,	e,	e,	o,	o,	e�� ,

and

Mfeq = 	
�eq

�x
eq

�y
eq

�xx
eq

�yy
eq

�xy
eq

�xxy
eq

�xyy
eq

�xxyy
eq


 = 	
�̄

�̄ūx

�̄ūy

�̄/3 + �̄ūx
2

�̄/3 + �̄ūy
2

�̄ūxūy

�̄ūy/3 + �̄ūx
2ūy

�̄ūx/3 + �̄ūxūy
2

�̄/9 + �̄/3�ūx
2 + ūy

2� + �̄ūx
2ūy

2


 = 	
�eq

�x
eq

�y
eq

�xx
eq

�yy
eq

�xy
eq

�xxy
eq

�xyy
eq

�xxyy
eq


 . �16�

The previous expressions are perfectly equivalent to the TRT
scheme with cs

2= 1
3 �18�, which has bulk viscosity equal to

kinematic viscosity �as explained in Sec. 2.1 of �20��. The
previous polynomial equilibrium has the same moments of
the continuous Maxwellian, given by Eq. �3�. It is possible to
prove that A is exactly the collisional matrix of the TRT
scheme and feq is the Taylor expansion of the continuous
equilibrium given by Eq. �1� for the D2Q9 lattice. If the

terms higher than second order with regard to macroscopic
velocity were neglected, then the previous equilibrium would
reduce to the standard expression, which is sufficient for con-
sistency �8�.

Hence, if the raw moments are relaxed in the frame at rest
as usual and only two relaxation frequencies are considered,
the proposed derivation leads to the TRT collisional operator
with proper polynomial equilibrium �result c�.
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B. Recovering the cascaded LBM scheme

The previous choice of the relaxation process recovering
the TRT scheme can be interpreted in terms of the following
definitions of g
 �
=3–8�:

	
g3/	e

g4/	e

g5/	e

g6/	o

g7/	o

g8/	e


 = S−1	
�̂xx

eq − �̂xx

�̂yy
eq − �̂yy

�̂xy
eq − �̂xy

�̂xxy
eq − �̂xxy

�̂xyy
eq − �̂xyy

�̂xxyy
eq − �̂xxyy


 , �17�

where S−1 is the shift matrix for passing from the moving
frame to the frame at rest. Clearly in the previous expression,
the relaxation is done in the frame at rest. In order to relax
the central moments, i.e., the moments shifted by the macro-
scopic velocity, in the moving frame, it is enough to apply
the relaxation frequencies before multiplying by S−1.

Actually, in Ref. �19�, the relaxation is done neither in the
frame at rest nor in the moving frame, but the cascaded re-
laxation is defined instead. First of all, the particular choice
g3�=	e

�g
3
*, g4�=	e

�g
4
*, g5�=	e

�g
5
* is assumed �which is equiva-

lent to relaxing the stress tensor components in the frame at
rest�, where 	e

� is the relaxation frequency controlling the
kinematic viscosity and 	e

� is that controlling the bulk viscos-
ity. By means of the fourth and fifth rows of matrix S defined
by Eq. �12�, the quantities g6� and g7� are computed, namely,

− 6ūyg3� − 2ūyg4� + 8ūxg5� − 4g6� = 	o��̂xxy
eq − �̂xxy� , �18�

− 6ūxg3� + 2ūxg4� + 8ūyg5� − 4g7� = 	o��̂xyy
eq − �̂xyy� , �19�

and, by means of the last row of matrix S, the quantity g8� is
computed, namely,

�8 + 6�ūx
2 + ūy

2��g3� + 2�ūy
2 − ūx

2�g4� − 16ūxūyg5� + 8ūyg6� + 8ūxg7�

+ 4g8� = 	e��̂xxyy
eq − �̂xxyy� . �20�

The previous choice is equivalent to relaxing the higher-
order moments in the moving frame.

Also in this case, it is possible to search for a simplified
evolution equation, namely,

f�p = f + Kg� = f + M−1�MKg�� = f + A��feq� − f� , �21�

where A�=M−1��M and �� is the block-diagonal matrix de-
fined as

�� = diag��0,0,0�,�	e
+ 	e

−

	e
− 	e

+,�	e
�,	o,	o,	e�� , �22�

where 	e
+= �	e

�+	e
�� /2 and 	e

−= �	e
�−	e

�� /2, while the mo-
ments of feq� are identical to those of feq reported in Eq. �16�,
with the exception of

�xxy�eq = �xxy
eq + �1 − ��/2ūy���xx − �xx

eq� + ��yy − �yy
eq��

+ �1 − ��/2ūy���xx − �xx
eq� − ��yy − �yy

eq��

+ 2�1 − ��ūx��xy − �xy
eq� , �23�

�xyy�eq = �xyy
eq + �1 − ��/2ūx���yy − �yy

eq� + ��xx − �xx
eq��

+ �1 − ��/2ūx���yy − �yy
eq� − ��xx − �xx

eq��

+ 2�1 − ����xy − �xy
eq�ūy , �24�

�xxyy�eq = �xxyy
eq + 2�1 − ���ūx��xyy − �xyy

eq � + ��xxy − �xyy
eq �ūy�

− 2�1 − ���ūx
2��yy − �yy

eq� + ��xx − �xx
eq�ūy

2

+ 4ūxūy��xy − �xy
eq�� + �1 − ���/2��ūx

2 + ūy
2�

����yy − �yy
eq� + ��xx − �xx

eq��� + �1 − ���/2��ūx
2 − ūy

2�

����yy − �yy
eq� − ��xx − �xx

eq���

+ 4�1 − ���ūxūy��xy − �xy
eq� , �25�

where �=	e
� /	o, �=	e

� /	o, �=	o /	e, ��=	e
� /	e, and ��

=	e
� /	e. Clearly in the case of single relaxation time, �

=�=�=��=��=1 and feq� = feq, proving that, for the
Bhatnagar-Gross-Krook �BGK� scheme �1�, the cascaded re-
laxation coincides with the relaxation of the raw moments in
the frame at rest. However, in general, relaxing differently
the central moments in the moving frame is equivalent to
considering a generalized local equilibrium, depending on
both conserved �as it happens in kinetic theory� and noncon-
served moments, such as �ij and �ijk, in the frame at rest
�result a�. Clearly the opposite holds as well, because relax-
ing differently the moments in the frame at rest �as usual�
leads to a generalization of the equilibrium in the moving
frame. Hence the previous result seems to suggest that,
among all the possible relaxations that can be recast in the
form given by Eqs. �21�–�25�, only the BGK relaxation ac-
tually avoids any equilibrium generalization in any frame.

IV. GRAD MOMENT EXPANSION

In order to check that the numerical scheme is actually
consistent with regard to the desired incompressible Navier-
Stokes equations, let us apply the procedure proposed in Ref.
�21� based on the Grad moment expansion.

Let us introduce first the diffusion scaling �7,8�. Introduc-
ing the small parameter � as �= lc /L, which corresponds to
the Knudsen number, where lc is the mean free path and L is
a macroscopic characteristic length, we have xi=�x̄i. Further-
more, assuming U /c=�, which corresponds to the Mach
number, where U is the macroscopic characteristic speed and
c is proportional to the sound speed, we have t=�2t̄. Conse-
quently, plugging the collisional operator given by Eq. �21�
in a kinetic evolution equation for f yields

�2� f

�t
+ �vi

� f

�xi
= A��feq� − f� . �26�

Taking into account that ūi=�ui because of the considered
low Mach number limit, let us compute the first moments of
Eq. �26�, namely,

� �̄

�t
+

���̄ui�
�xi

= 0, �27�
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�3���̄ui�
�t

+ �
��ij

�xj
= 0, �28�

where the stress tensor components satisfy

�2��xx

�t
+ �

��xxk

�xk
= 	�

+��xx
eq − �xx� + 	�

−��yy
eq − �yy� , �29�

�2��yy

�t
+ �

��yyk

�xk
= 	�

−��xx
eq − �xx� + 	�

+��yy
eq − �yy� , �30�

�2��xy

�t
+ �

��xyk

�xk
= 	�

���xy
eq − �xy� . �31�

Since O��ijk�=O��ijk
eq �=� �21�, the previous equations prove

that O��ij −�ij
eq�=O��2�. Introducing this result into Eqs. �23�

and �24� yields

�xxy�eq − �xxy
eq = O��3�, �xyy�eq − �xyy

eq = O��3� .

Searching for approximated expressions of the stress tensor
components, it is possible to assume that �xxy ��xxy�eq��xxy

eq

and �xyy ��xyy�eq��xyy
eq without affecting the second-order ac-

curacy of the method. The generalized local equilibrium dif-
fers from the Taylor-expansion-based equilibrium given by
Eq. �16� for higher-order terms, which do not modify the
recovered macroscopic equations up to the incompressible
Navier-Stokes level �result b�.

V. CONCLUSIONS

The cascaded LBM �19� represents an alternative ap-
proach to enhance the stability of traditional MRT-LBM
schemes. The present work shows that the cascaded LBM
uses a generalized local equilibrium in the frame at rest,
which depends on both conserved and nonconserved mo-
ments. This new equilibrium does not affect the consistency
of the LBM. These results may clarify the essence of the
cascaded LBM and they may help in developing new
schemes in a systematic way.
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